Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Med Sci ; 20(4): 530-541, 2023.
Article in English | MEDLINE | ID: covidwho-2280444

ABSTRACT

Background: COVID-19 is known to disrupt immune response and induce hyperinflammation that could potentially induce fatal outcome of the disease. Until now, it is known that interplay among cytokines is rather important for clinical presentation and outcome of COVID-19. The aim of this study was to determine transcriptional activity and functional phenotype of T cells and the relationship between pro- and anti-inflammatory cytokines and clinical parameters of COVID-19 severity. Methods: All recruited patients met criteria for COVID-19 are were divided in four groups according to disease severity. Serum levels of IL-12, IFN-γ, IL-17 and IL-23 were measured, and flow cytometry analysis of T cells from peripheral blood was performed. Results: Significant elevation of IL-12, IFN-γ, IL-17 and IL-23 in stage IV of the disease has been revealed. Further, strong intercorrelation between IL-12, IFN-γ, IL-17 and IL-23 was also found in stage IV of the disease, marking augmented Th1 and Th17 response. Analyses of T cells subsets indicate a noticeable phenotype change. CD4+, but not CD8+ T cells expressed increased transcriptional activity through increased expression of Tbet and RORγT, accompanied with increased percentage of IFN-γ and IL-17 producing T cells. Conclusion: Our results pose a novel hypothesis of the underlying mechanism behind deteriorating immune response in severe cases of COVID-19.


Subject(s)
COVID-19 , Interleukin-17 , Humans , Interleukin-17/metabolism , Th1 Cells , COVID-19/metabolism , Cytokines/metabolism , Interleukin-12/metabolism , Interleukin-23/metabolism , Th17 Cells
2.
Sci Rep ; 13(1): 1460, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2212032

ABSTRACT

Galectin-3 (Gal-3), multifunctional protein plays important roles in inflammatory response, infection and fibrosis. The goal of study was to determine the association of Gal-3, immune response, clinical, biochemical, and radiographic findings with COVID-19 severity. Study included 280 COVID-19 patients classified according to disease severity into mild, moderate, severe and critical group. Cytokines, clinical, biochemical, radiographic data and peripheral blood immune cell make up were analyzed. Patients in critical group had significantly higher serum level of Gal-3, IL-1ß, TNF-α, IL-12, IL-10 compared to the patients in less severe stages of disease. Strong positive correlation was detected between Gal-3 and IL-1ß, moderate positive correlation between Gal-3, TNF-α and IL-12, moderate negative correlation between Gal-3, IL-10/IL-1ß and IL-10/TNF-α. Moderate positive correlation noted between Gal-3 and urea, D dimer, CXR findings. Strong negative correlation detected between Gal-3 and p02, Sa02, and moderate negative correlation between Gal-3, lymphocyte and monocyte percentage. In the peripheral blood of patients with more severe stages of COVID-19 we detected significantly increased percentages of CD56- CD3+TNF-α+T cells and CD56- CD3+Gal-3+T cells and increased expression of CCR5 in PBMCs. Our results predict Gal-3 as an important marker for critical stage of COVID-19. Higher expression of Gal-3, TNF-α and CCR5 on T cells implicate on promoting inflammation and more severe form of disease.


Subject(s)
COVID-19 , Galectin 3 , Humans , Galectin 3/metabolism , Interleukin-10 , Tumor Necrosis Factor-alpha , Prognosis , Cytokines/metabolism , Interleukin-12
3.
J Clin Med ; 11(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071547

ABSTRACT

BACKGROUND: Early prediction of COVID-19 patients' mortality risk may be beneficial in adequate triage and risk assessment. Therefore, we aimed to single out the independent morality predictors of hospitalized COVID-19 patients among parameters available on hospital admission. METHODS: An observational, retrospective-prospective cohort study was conducted on 703 consecutive COVID-19 patients hospitalized in the University Clinical Center Kragujevac between September and December 2021. Patients were followed during the hospitalization, and in-hospital mortality was observed as a primary end-point. Within 24 h of admission, patients were sampled for blood gas and laboratory analysis, including complete blood cell count, inflammation biomarkers and other biochemistry, coagulation parameters, and cardiac biomarkers. Socio-demographic and medical history data were obtained using patients' medical records. RESULTS: The overall prevalence of mortality was 28.4% (n = 199). After performing multiple regression analysis on 20 parameters, according to the initial univariate analysis, only four independent variables gave statistically significant contributions to the model: SaO2 < 88.5 % (aOR 3.075), IL-6 > 74.6 pg/mL (aOR 2.389), LDH > 804.5 U/L (aOR 2.069) and age > 69.5 years (aOR 1.786). The C-index of the predicted probability calculated using this multivariate logistic model was 0.740 (p < 0.001). CONCLUSIONS: Parameters available on hospital admission can be beneficial in predicting COVID-19 mortality.

4.
Sci Rep ; 12(1): 1272, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1649339

ABSTRACT

A new virus from the group of coronaviruses was identified as the cause of atypical pneumonia and called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and disease called Corona Virus Disease (COVID-19). During the cytokine storm, the main cause of the death, proinflammatory cytokines are released which stimulate further tissue destruction. Galectin-1 (Gal-1) is a pleiotropic cytokine involved in many immune and inflammatory processes and its role in COVID-19 is still unknown. The aim of this study was to determine systemic values of Gal-1 and correlations between Gal-1 and proinflammatory cytokines and clinical parameters during COVID-19 progression. This is observational and cross-sectional study. 210 COVID-19 patients were included and divided into mild, severe or critical group according to COVID-19 severity. Serum levels of IL-1ß, IL-6, IL-10, IL-23, IL-33 and Gal-1 were measured using sensitive enzyme-linked immunosorbent assay (ELISA) kits. Systemic levels of IL-1ß, IL-6, IL-10, IL-23, IL-33 and Gal-1 were significantly higher in stage III of COVID-19 patients compared to stage I and II. There were no significant differences in the ratio between Gal-1 and IL-10 with proinflammatory cytokines. Positive correlation was detected between Gal-1 and IL-1ß, IL6, IL-10, IL-23 and IL-33. Gal-1 positively correlated with chest radiographic finding, dry cough and headache and negatively correlated with normal breathing sound. Linear regression model and ROC curve analysis point on Gal-1 as significant predictor for COVID-19 severity. Presented results implicate on Gal-1 and IL-10 dependent immunomodulation. The precise mechanism of Gal-1 effect in COVID-19 and its potential as a stage marker of disease severity is still to be clarified.


Subject(s)
COVID-19/blood , Galectin 1/blood , SARS-CoV-2/metabolism , Biomarkers/blood , COVID-19/diagnosis , Cytokines/blood , Female , Humans , Male , Middle Aged , Prognosis , Severity of Illness Index
5.
Front Med (Lausanne) ; 8: 749569, 2021.
Article in English | MEDLINE | ID: covidwho-1581299

ABSTRACT

Objective: The increased level of interleukin (IL)-33 is considered as a predictor of severe coronavirus disease 2019 (COVID-19) infection, but its role at different stages of the disease is still unclear. Our goal was to analyze the correlation of IL-33 and other innate immunity cytokines with disease severity. Methods: In this study, 220 patients with COVID-19 were included and divided into two groups, mild/moderate and severe/critical. The value of the cytokines, clinical, biochemical, radiographic data was collected and their correlation with disease severity was analyzed. Results: Most patients in the severe/critical group were male (81.8%) and older (over 64.5 years). We found a statistically significant difference (p < 0.05) in these two groups between clinical features (dyspnea, dry cough, fatigue, and auscultatory findings); laboratory [(neutrophil count, lymphocyte count, monocyte count, hemoglobin, plasma glucose, urea, creatinine, total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), albumin (ALB), lactate dehydrogenase (LDH), creatinine kinase (CK), D-dimer, C-reactive protein (CRP), procalcitonin (PCT), Fe, and Ferritin)], arterial blood gases (oxygen saturation-Sa02, partial pressure of oxygen -p02), and chest X-rays (CXR) lung findings (p = 0.000). We found a significantly higher serum concentration (p < 0.05) of TNF-α, IL-1ß, IL-6, IL-12, IL-23, and IL-33 in patients with COVID-19 with severe disease. In the milder stage of COVID-19, a positive correlation was detected between IL-33 and IL-1ß, IL-12 and IL-23, while a stronger positive correlation between the serum values of IL-33 and TNF-α, IL-1ß, IL-6, and IL-12 and IL-23 was detected in patients with COVID-19 with severe disease. A weak negative correlation (p < 0.05) between pO2 and serum IL-1ß, IL-12, and IL-33 and between SaO2 and serum IL-33 was noted. The positive relation (p < 0.05) between the serum values of IL-33 and IL-12, IL-33 and IL-6, and IL-6 and IL-12 is proven. Conclusion: In a more progressive stage of COVID-19, increased IL-33 facilitates lung inflammation by inducing the production of various innate proinflammatory cytokines (IL-1ß, IL-6, TNF-α, IL-12, and IL-23) in several target cells leading to the most severe forms of the disease. IL-33 correlates with clinical parameters of COVID-19 and might represent a promising marker as well as a therapeutic target in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL